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ABSTRACT

The increasing importance of batteries across diverse sectors, spanning from consumer electronics to electric vehicles, underscores the critical necessity for 
precise battery models. This review delineates four primary categories of battery models: empirical, equivalent circuit, data-driven, and physics-based models. 
Empirical models like the Nernst and Shepherd models offer simplicity but lack precision. Equivalent circuit models strike a balance between simplicity and 
accuracy, albeit with validation constraints. Data-driven methods leverage machine learning to predict battery performance accurately but require high-quality 
datasets. Physics-based models integrate fundamental electrochemical processes for detailed understanding, albeit with heightened computational complex-
ity. Comparative analyses, with a focus on lithium-ion batteries, reveal trade-offs between computational efficiency and accuracy. The Single Particle Model 
and its extension single particle model with electrolyte dynamics emerge as efficient options, with single particle model with electrolyte dynamics showing 
promising accuracy akin to Single Particle Model. Additionally, comparisons across different battery chemistries unveil varying levels of modeling precision. 
This article compares different electrochemical modeling techniques across chemistries to discern optimal methods. The electrochemical model, which is one 
of the battery modeling techniques, has been examined and investigated in detail in this study and has contributed to the literature on how the model with 
which chemistry works with which electrochemical model. In addition, this study contributed to the existing lithium ferro-phosphate chemistry modeling with 
optimization technique in pybamm. The synthesis offers insights into diverse modeling methodologies and their implications for battery research and develop-
ment, guiding future investigations toward more tailored modeling strategies for specific applications.

Index Terms—Lithium-ion battery, electrochemical modeling, comparing modeling methods

I. Introduction
In today’s world, the importance of batteries, which are energy 
storage systems used in almost all electronic devices in our lives, 
ranging from electric vehicles to consumer electronics, medical 
devices, industrial applications, aerospace, and defense, is increas-
ing every day. Batteries are devices that store and provide electrical 
energy through reversible chemical reactions. While batteries with 
various chemistries are used today, the most popular type of bat-
tery is lithium-ion batteries. Lithium-ion batteries are widely used 
in electric vehicles, consumer electronics, and energy storage sys-
tems since they have high energy density, low self-discharge, and 
are lightweight. They are available in various chemistries such as 
Lithium Cobalt Oxide (LiCoO2), Lithium Iron Phosphate (LiFePO4), 
and Lithium Nickel Manganese Cobalt Oxide (NMC). The increasing 
significance of these batteries is directly dependent on the effective 
harnessing of their capabilities. Achieving this level of efficiency and 

utility necessitates the development of precise and actionable bat-
tery models.

In literature, battery models are categorized into four main groups 
[1]. The classical empirical models, based on experiments, include 
the Shepherd model [2], the Unnewehr universal model [3, 4], and 
the Nernst model [5]. The Nernst model is noted for its accuracy, 
while the Shepherd model is particularly effective for continuous 
discharge currents. Enhancements to these models involve adding 
more parameters and variables. For example, improving the Nernst 
model’s prediction of dynamic terminal voltage is possible by incor-
porating two constants (τ1 and τ2) [6]. Additionally, refining the 
Nernst model with the hysteresis effect offers further improvements 
[7]. However, such enhancements increase computational complex-
ity. The accuracy of these three models in predicting terminal voltage 
is compared in [8].
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Secondly, the equivalent circuit model (ECM) consists of a SOC-
dependent voltage source, an internal resistor, and resi​stanc​e-ca​
pacit​ance (RC) networks that can describe the electrical relationship 
between the inputs (current, SOC, and temperature) and the termi-
nal voltage [9]. Fig. 1 illustrates a schematic of a part of a simple 
electrical circuit that contains resistors (R0 and R1) and a capacitor 
(C). The model comprising an internal resistor and a resistor-capaci-
tor block between the open circuit voltage and the terminal voltage 
is used as a common battery model [10]. When contrasting ECMs 
with empirical models, it becomes evident that ECMs exhibit a high 
degree of simplification in their ability to accurately discern the 
electrical properties inherent to batteries. Besides, because of the 
large number of circuit components and their variations, the ECM 
gives researchers enough flexibility to design a structure appropri-
ate for their application. By adding more elements, the model can 
yield more correct and precise simulations of battery behavior. The 
disadvantage of using more elements in the equivalent circuit is 
that more information about the cell is needed for parameterization 
and CPU time for calculations increases [11]. The empirical battery 
model can give accurate outputs, but the model requires valida-
tion for all different scenarios. ECMs are used for various industrial 
applications due to their simple structure and simple parameteriza-
tion process. But the model can only be applied to the scenarios 
for which it has been tested and processes such as aging are dif-
ficult to incorporate, so adaptation and new data collection are 
required [12].

Data-driven battery modeling methods aim to predict battery perfor-
mance and capacity using information derived from large datasets. 

Their increasing popularity stems from their ability to model com-
plex nonlinear behaviors, adaptability, and high accuracy rates. These 
models employ machine learning techniques to understand the 
relationship between input parameters like voltage, temperature, 
current, and output parameters such as state of charge and capac-
ity, based on a dataset of battery measurements. However, the use 
of these models requires a careful experimental setup and data col-
lection process, as high-quality data is essential. The use of unstable 
data can lead to the model overfitting or underpredicting [13, 14].

Physics-based models, also known as electrochemical models, math-
ematically express the fundamental physical and chemical processes 
in batteries, including electrochemical reactions, ion transport, elec-
tron flow, and the materials’ thermodynamic and kinetic properties. 
Lithium-Ion flow among the solid and electrolyte phases is oftentimes 
involved in these models, along with charge and mass conservation 
in both phases. The electrochemical model is represented in the 
form of nonlinear Partial Differential Equations (PDEs). For this rea-
son, a precondition for utilizing an electrochemical model to derive a 
direct analytical solution is to turn the PDEs into Ordinary Differential 
Equations (ODEs). Numerical techniques such as integral approxima-
tion, Pade approximation, Ritz method, finite element method, and 
finite difference method are often preferred to discretize nonlinear 
PDEs in electrochemical models [15, 16]. Employing these models 
enables accurate predictions of battery performance under various 
conditions, including charge-discharge cycles, temperature varia-
tions, and aging effects.

There are many electrochemical models in the literature; these offer 
various approaches to understanding the complex internal structure 
and operational mechanisms of batteries. Electrochemical battery 
modeling comprehensively addresses the electrochemical reactions 
of the battery, thermal management, electrical characteristics, and 
aging processes. These models provide insights into how batteries 
will perform under real-world conditions, assisting in the develop-
ment of design and operational strategies necessary to make batter-
ies more efficient and longer-lasting.

In [17], it was first used to determine the parameters that extract the 
model of the LFP cell, presents simulations of power and capacity 
degradation of LiFePO4-Graphite Li-ion batteries by simplifying the 
electrochemical and thermal aging model. They developed a model 
to understand how the performance of LFP cells changes with time. 
The model simulates the degradation in the capacity and power of 
the battery, taking into account thermal as well as electrochemi-
cal interactions. This study can be considered as an important step 
towards understanding the aging processes of LiFePO4-Graphite 
Li-ion batteries and improving their performance. Since other mod-
eling attempts using the parameters presented in [17] did not yield 
the desired modeling results, an additional study [18] was conducted 
in 2021 to optimize the parameters and find variations and param-
eters that produce more accurate results.

In [19, 20], a method for determining the electrochemical model of 
a lithium-ion battery, with a focus on lithium polymer battery cell, 
is introduced. A series of experiments and analyses are performed 
to develop a comprehensive model that includes electrochemical 

Main Points

•	 Summarized and compared various modeling methods in 
existing literature based on their complexity and outcomes.

•	 Explored the relationship between these modeling methods 
and specific chemistries, aiming to discern which methods 
are more suitable for particular chemical systems.

•	 Updated modeling approaches with optimization methods 
to enhance accuracy, and investigated which chemistries are 
better suited for physics-based modeling understanding.

Fig. 1. Equivalent circuit model (ECM).
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and thermal properties as well as material properties. First, several 
chemical experiments were conducted to determine the electro-
chemical properties of the lithium-ion battery. These experiments 
were carried out to identify the material properties of the elec-
trodes, the diffusion rates of lithium ions, and the electrochemi-
cal reaction kinetics. Then, physical experiments were made to 
determine the material properties and thermal behavior. These 
experiments were carried out to evaluate the conductivity proper-
ties of the electrode materials, temperature profiles, and thermal 
conductivities of the lithium-ion battery. The data obtained were 
used to determine the parameters of the electrochemical model 
used to simulate the behavior of the battery. This study provides 
a contribution to more accurate modeling of lithium-ion batteries 
and a better understanding of their performance. In addition to 
this model, some of the parameters used in the study, which will 
be discussed later, are tab placement parameters taken from mea-
surements in [21] and some electrode and electrolyte properties 
from [22].

In [22], an electrochemical, thermal, and mechanical model that 
investigates the nonuniform distribution of stress within lithium-
ion pouch cells, with a focus on lithium cobalt oxide-graphite cell, 
is described. The model adopts a pseudo-2D approach involving 
mechanically coupled diffusion physics, which enables the study of 
the stress response in electrode particles. The results obtained in the 
study indicate that the model can successfully predict voltage, tem-
perature, and thickness variations in pouch cells and are in agree-
ment with experimental data.

To implement all these modeling techniques and to ensure the 
safety and longer useful life of the lithium-ion battery for its better 
operation, there is an important and fundamental need for a bat-
tery management system (BMS). The battery management system 
should have the capability to provide accurate prediction to the state 
of charge (SOC), state of battery integrity, and remaining useful life 
in the cell. Estimating the state of charge of the battery is one of 
the most important features of BMS tasks. Yet, the SOC is difficult 
to predict accurately. This is because SOC is the internal state of the 
battery cell and is not directly measured. Therefore, the SOC must 
be estimated. So far, several methods have been proposed to esti-
mate the state of charge of the battery, which are generally divided 
into two groups: free model and model-based. Free models include 
Ampere-hour (Ah) or coulomb count, open circuit voltage (OCV). 
Apart from these two methods, the development reported in [23-
25] is the method that applies a particle filter modified with the RLS 
algorithm to improve the accuracy of predicting the SOC of a lithium-
ion battery in electric vehicles. The results show that the proposed 
method works effectively compared to other methods.

The following are the details for the 3 main categories most com-
monly found in the literature, but another similar approach is the 
Two-parameter approximation model, Single Particle Model (SPM), 
and Decoupled Solution Approach, which are also grouped into 3 
main categories. Aging studies related to this classification were also 
performed for Lithium Manganese Oxide (LMO) cell and it was con-
cluded that for the same electrolyte and cell parameters, the simula-
tion methods can be applied to any cell chemistry [26].

II. electrochemical battery model
Electrochemical battery models play a key role in understanding 
energy storage and conversion processes. These models typically 
incorporate a mix of electrochemical interactions, transport events, 
and circuit elements to truly describe the complex behavior of bat-
teries. The electrochemical model of the mechanism can not only 
define macroscopic physical quantities such as voltage and current 
but also simulate important microscopic physical quantities inside 
the cell, which is suitable for application in degradation analysis and 
aging analysis of battery behavior [27-29].

Physics-based models provide a more detailed understanding by 
directly incorporating the electrochemical reactions and transport 
phenomena underlying the battery. These models are usually based 
on partial differential equations (PDEs) to describe the species con-
centration, charge, and temperature distributions within the bat-
tery. While more complex and computationally intensive compared 
to lumped-parameter models, physics-based models offer higher 
accuracy and can capture nuances such as temperature effects, 
electrolyte transport limitations, and electrode degradation. Hybrid 
approaches are also available, combining aspects of both granular 
parameter and physics-based models, aiming to strike a balance 
between computational efficiency and accuracy. Ultimately, the 
selection of the model depends on the specific application require-
ments, the level of detail needed, and the computational resources 
available.

A. Single Particle Model
The single particle model (SPM) is a representation of a Li-ion battery 
[Fig 2] that takes into account the transport of lithium ions within 
the solid particles of the battery electrodes. The model assumes a 
constant concentration of lithium ions in the electrolyte and ignores 
the propagation of the electrode concentration along the electrode. 
Diffusion within each electrode is ruled by Fick’s law in the spheri-
cal orientation. Boundary conditions at the surface and core of the 
particle are defined to represent the inter​calat​ion-d​einte​rcala​tion 
process of lithium ions. The molar flux at the surface is influenced by 
the input current density and the diffusion rate constant. The Butler–
Volmer equation considers the electrode concentration to be equal 
to the electrolyte concentration and associates the overpotential 
at the solid–electrolyte interface with the current density. Negative 
and positive phase overpotentials are expressed as functions of tem-
perature, charge transfer coefficient, and electrode surface area. 
The exchange current density is calculated based on the constant 
electrolyte concentration and the maximum concentration of the 
electrode. The state of charge (SoC) of the battery can be deter-
mined using normalized lithium concentrations on the surface of the 
electrodes. The total cell potential takes into account contributions 
from the overpotentials of the electrodes and open circuit potential 
functions [19, 20]. SPM representation of Lithium-Ion batteries are 
illutrated in Fig. 2.

More detailed explanation of SPM and its formulas, SPM comprises 
of two diffusion equations that exhibit spherical symmetry: one oper-
ating within a typical negative particle (k = n) and the other within a 
typical positive particle (k = p). At the core of each particle, the stan-
dard no-flux condition is enforced. Given the SPM’s assumption that 
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all particles within an electrode exhibit identical behavior, the flux 
at the particle surface equates to the current (I) divided by the elec-
trode thickness (Lk). The concentration of lithium within electrode (k) 
is represented as (ck). The model equations governing the SPM are 
as follows [24, 30]:
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where Ds,k is the diffusion coefficient in the solid, Ns,k denotes the flux 
of lithium ions in the solid particle within the region k, and rk is the 
radial coordinate of the particle in electrode k.

The voltage is obtained from the expression:
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with the exchange current densities given by
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B. Single Particle Model with Electrolyte
Single particle model with electrolyte dynamics (SPMe) extends the 
single particle model (SPM) to cover electrolyte diffusion dynamics 

across the length of battery electrodes. It presents diffusion equa-
tions for the negative electrolyte, separator, and positive electrolyte, 
taking into account electrolyte polarization and conductivity due to 
overpotential.

The diffusion equations rule the electrolyte diffusion through the 
thickness of the electrodes and separator, with additional terms that 
represent the electrolyte polarization and conductivity. Boundary 
conditions provide stability of concentration at the interfaces 
between the different regions.

The electrolyte potential is divided into electrolyte overpo-
tentials that rely on conductivity and electrolyte polarization. 
Electrolyte conductivity depends on concentration and is derived 
from experimental data. The effective conductivity is defined as 
a function of the lithium concentration and the volume fractions 
of each region, taking into account the porous structure of the 
electrolyte medium.

The Bruggeman correction is used to determine the effective con-
ductivity and the Bruggeman exponent measures the influence of 
the porous medium on the electrolyte properties. Higher Bruggeman 
constants lead to lower effective conductivity, directly affecting the 
cell voltage.

The electrical overpotential due to electrolyte conductivity is 
represented as ohmic resistance, taking into account the cur-
rent density and the thicknesses of the electrodes and separa-
tor. This resistance is identified by electrochemical impedance 
spectroscopy.

The electric overpotential due to lithium-ion diffusion is calculated 
based on the electrolyte activity coefficient, which takes into account 
the effects of electrolyte concentration and temperature. The activ-
ity coefficient is calculated separately for each phase.

Finally, the cell potential is calculated as the sum of the solid-phase 
potential (from SPM) and the electric overpotentials due to electro-
lyte conductivity and polarization.

Fig. 2. SPM representation of lithium-ion batteries [23]. SPM, single particle model.
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Overall, SPMe provides a more comprehensive understanding of bat-
tery behavior by integrating electrolyte dynamics and its effect on 
cell performance and voltage.

More detailed explanation of SPMe and its formulas, SPMe encom-
passes equations governing the lithium concentration within repre-
sentative particles situated in the negative electrode (cs,n) and the 
positive electrode (cs,p), alongside an equation dictating the behav-
ior of the first-order correction to the lithium concentration within 
the electrolyte (ce,k), where a Roman subscript k∈n,s,p designates 
the negative electrode, separator, and positive electrode regions, 
respectively.

Adhering to the standard practice, the no-flux condition is enforced 
at the center of each particle, and the flux at the particle’s surface 
is determined as the ratio of the current (I) to the thickness of the 
respective electrode (Lk), akin to the SPM. Given the transfer of lith-
ium between the electrolyte and particles, the flux through the par-
ticle’s surface is incorporated into the electrolyte diffusion equation 
as a source/sink term. Notably, there’s no lithium transfer between 
the electrolyte and current collectors, resulting in no-flux boundary 
conditions on the lithium concentration within the electrolyte (ce,k) 
at either end of the cell.

It is imperative to set initial conditions reflecting the establishment 
of an initial concentration within each particle (cs,k(t = 0)=cs,k,0), and 
ensuring no deviation from the initial (uniform) lithium concentra-
tion within the electrolyte (ce,k (t = 0) =ce,0) [24, 30]:

Particle formulas are given in (7)–(9) where Ds,k is the diffusion coef-
ficient in the solid, Ns,k denotes the flux of lithium ions in the solid 
particle within the region k, and rk is the radial coordinate of the 
particle in electrode k.
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Electrolyte formulas are given in (10)–(13) where De is the diffu-
sion coefficient in the solid, Ne,k denotes the flux of lithium ions 
in the electrolyte within the region k, and x ∈ [0, L] is the mac-
roscopic through-cell distance. This equation is also solved subject 
to continuity of concentration and flux at the electrode/separator 
interfaces.
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Voltage formulas are given in (14)–(22) where Uk is the reference 
OCP, b is the Bruggeman coefficient, j is the exchange-current den-
sity, ϕ is the electric potential, F is the Faraday’s constant, R is the 
universal gas constant, and T is the temperature, Ln,Ls,Lp are the 
thicknesses of the negative electrode, separator, and positive elec-
trode respectively.
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C. Doyle–Fuller–Newman Model
The Doyle–Fuller–Newman (DFN) model introduced and developed 
by Doyle and Newman is a widely used electrochemical model for 
simulating the operation of lithium-ion batteries [Fig. 3]. It integrates 
mass transfer, diffusion, migration, and reaction kinetics to provide a 
comprehensive understanding of battery behavior.

The DFN model is acknowledged as the most widespread and exten-
sively verified model in the literature for investigating Li-ion batter-
ies. It is made up of equations describing the movement of lithium 
ions within the battery electrodes and electrolyte. These equations 
are essentially based on partial differential equations (PDEs) govern-
ing diffusion phenomena.
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In particular, diffusion PDEs in solid particles are very crucial in the 
DFN model. They provide significant information about the presence 
of lithium ions for electrochemical reactions and the lithium concen-
tration within the electrodes. However, resolving these solid-phase 
diffusion equations needs more computational work compared to 
the electrolyte phase diffusion equations. This is mainly because 
solid-phase diffusion changes not only through the thickness of the 
electrode on the macroscopic scale (x-scale), but also through the 
radius of the particles on the microscopic scale (r-scale).

The DFN model is composed of coupled PDAEs, and some of the 
parameters in these equations are coupled together such that it is 
mathematically not possible to determine all parameter values cor-
rectly and uniquely from input–output data [27]. Exact parameter-
ization is difficult as many of the required quantities must be inferred 
indirectly from experimental data. Moreover, there can be significant 
variability from device to device, even in cells that are seemingly 
prepared in the same way. Therefore, proper parameterization is 
an obstacle that must be addressed to obtain the maximum benefit 
from DFN models [28]. Due to the computational complexity of solid 
phase diffusion, efforts are being made to simplify these equations 
to allow for real-time simulation capabilities. This simplification is 
very important for practical applications where rapid prediction of 
battery performance is necessary [31].

Overall, the DFN model is a strong tool for investigating the electro-
chemical behavior of Li-ion batteries and offers insights into the vari-
ous processes that occur within the battery during charge-discharge 
cycles.

More detailed explanation of DFN and its formulas, DFN model 
encapsulates equations ensuring the conservation of charge and 
mass within both the solid and electrolyte phases, while also outlin-
ing the behavior governing electrochemical reactions transpiring at 

the interface between the solid and electrolyte [32, 33]. A Roman 
subscript is employed to signify the negative electrode, separator, 
and positive electrode regions, respectively. The model equations for 
the DFN are as follows [24, 30, 34]:

Charge conservation formulas are given in (23)-(25) where ak is the 
electrode surface area density, k  is the electrolyte volume fraction, 
ce is the lithium-ion concentration in the electrolyte, ak is the elec-
trode surface area density, i is the current density:
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Mass conservation formulas are given in (26)-(29) where N is the 
molar flux and De is the electrode diffusivity:
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Fig. 3. DFN model of lithium-ion batteries [32]. DFN, Doyle–Fuller–Newman.
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Electrochemical reaction formulas are given in (30)-(32):

	 j jk k� �
�
�

�
�
� �2

20, sinh , , ,F
RT

k n pk� 	 (30)

	 j k0

1
2

1
2

1
2

11, , , , | , ,� �� � ��c c c k n ps k s k e k rk
	 (31)

	 � � �k S k e k k s k rU c k n pk� � � � � ��, , , | , , ,1
	 (32)

Current formulas are given in (33)–(35):

	 i ie n x e p x L, ,| , | ,= == =0 0 0 	 (33)

	 � �e n x L e s x L e n x L e s x Ln n n ni i I, , , , ,| | | |� � � �� � � 	 (34)

	 � �e s x L L e p x L L e s x L L e p x L Lp p p pi i I, , , ,| | , | |� � � � � � � �� � � 	 (35)

Concentration in the electrolyte is given in (36)-(38).

	 N Ne n x e p x L, ,| , | ,= == =0 0 0 	 (36)

	 c c N Ne n x L e s x L e n x L e s x Ln n n n, , , , ,| | | | ,= = = == = 	 (37)

	 c c N Ne s x L L e p x L L e s x L L e p x L Lp p p p, , , ,| | , | | .� � � � � � � �� � 	 (38)

Concentration in the electrode active material is given in (39):

	 N k n p N j
F

k n ps k r s k r R
k

k k k, ,| , , , | , , .� �� � � �0 0 	 (39)

Reference potential is given in (40):

	 �s cn tx, ,, .� ��0 � ab n 	 (40)

Initial conditions are given in (41, 42):

	 c x r c k n ps k s k, , ,, , , ,0 0� � � � 	 (41)

	 c x c k n s pe k e, ,, , , ,0 0� � � � 	 (42)

III. comparison of electrochemical battery models
By using the SPM, SPMe, and DFN model bases that have been 
described so far in this paper, all these models and cell types have 
been compared for different battery chemistries by using these dif-
ferent modeling techniques with the help of Python Pybamm Library 
[34] and Matlab platform has been used for the visualizations. Fig. 4 
shows the results of the SPM, SPMe, and DFN models for a particular 
chemistry, LFP, using the Pybamm [30]. The model used in this com-
parison is the default model parameters available in Pybamm, and 
the mesh geometry and cell geometry are chosen by default. These 
default parameters were obtained from referenced papers [24, 30, 
32-37]. Table I presents the computation times of the models.

In a comparative study on the solution times of the equations for 
DFN, SPM, and SPMe models, it has been observed that despite 
using the same solution methodology, the solution time for the DFN 
model is significantly longer compared to the SPM and SPMe models. 
This situation can be explained by the DFN model having a greater 

complexity in terms of the mathematical representation of the elec-
trochemical processes considered within the model. This complex-
ity directly affects the model’s solution time, making it a significant 
factor in terms of time efficiency in analysis and simulation studies.

First, in Fig. 5, a comparison of 3 different modeling methods using 
lithium-ion polymer, Kokam SLPB 75106100, was performed at dif-
ferent C-rates and the total error values were compared. Parameters 
for a Kokam SLPB 75106100 cell are from the papers [19, 20]. The tab 
placement parameters are taken from measurements in [21]. The 
thermal material properties are for a power pouch cell by Kokam. The 
data are extracted from [34]. Lastly, the fits to data for the electrode 
and electrolyte properties are those provided by Dr. Simon O’Kane 
in the paper [6]. Also, the experimental data values were obtained 
from the 1C and 5C discharge values given in the cell datasheet.

Secondly, in Fig. 6, a comparison of three different modeling meth-
ods using Lithium cobalt oxide-graphite, Enertech LCOG SPB655060, 
was performed at different C-rates and the total error values were 
compared. Parameters for the Enertech cell, from the papers [22, 
38] and references therein. SEI parameters are example parameters 
for SEI growth from the papers [38-43]. Also, the experimental data 
values were obtained from the 0.5C and 1C discharge values given in 
the cell datasheet.

Thirdly, in Fig. 7, a comparison of 3 different modeling methods 
using Lithium Iron Phosphate, A123 ANR26650M1B, was per-
formed at different C-rates and the total error values were com-
pared. Parameters for a Kokam SLPB 75106100 cell are from the 
papers [17]. Subsequently, a re-study was carried out and some 
of the parameters, in the article [18], were updated to give more 
accurate results. Nevertheless, it was noticed that even the values 
in the paper [18] did not exactly match the experimental data, so a 

Fig. 4. Comparison of three different modeling types.

TABLE I. 
COMPARISON OF THE COMPUTATION TIMES OF THE MODELS

Model Computation time (ms)

Doyle–Fuller–Newman model 248.25

Single particle model with electrolyte 31.61

Single particle model 15.37



Yavuz et al. A Comprehensive Review of Physics-Based Battery Models

115114

TEPES Vol 4., Issue. 2, 108-117, 2024

parameter optimization technique was attempted. With this param-
eter optimization technique called curve fitting, curve fitting is the 
process of generating a curve or mathematical function that best fits 
a set of data points, possibly subject to restrictions, it was observed 
that more accurate values were achieved by adjusting the values 
of Negative electrode thickness and Negative particle radius as in 
Table II. The rest of the parameters remain the same as in [17].

Fourthly, in Fig. 8, the modeling of the INR21700 M50 battery cell, 
which is produced by LG Chem and features NMC 811 chemistry, was 
conducted. The analysis was carried out at a constant temperature 

of 25° Celsius, considering two different discharge current rates, 1C 
and 2C. The Pybamm Chen2020 parameters were utilized as the 
modeling parameters [44].

Drawing upon the acquired data, it becomes evident that the 
Discrete Fracture Network (DFN) model necessitates extensive 
mathematical computations and solution time in contrast to the 
Single Particle Model (SPM) and its extension, SPMe. For LiPo, 
LCO, LFP, and NMC battery cell types, results obtained using 
DFN, SMPe, and SPM models at various C-rate values have been 
compared with experimental data. Root mean square error cal-
culations were performed for each model, and the results are pre-
sented in Table III.

As reported in Table IV, the comparison of all these models reveals 
that DFN has the highest overall score in terms of accuracy. It is fol-
lowed by SPMe and SPM. Conversely, this order is exactly in reverse 
order in terms of complexity and computation time.

IV. CONCLUSION
This study provides a concise overview of physics-based model-
ing techniques found in existing literature and compares these 

Fig. 5. Li-po modeling using DFN, SPMe, and SPM model with 1C and 5C C-rates. DFN, Doyle–Fuller–Newman; SPM, single particle model; SPMe, 
single particle model with electrolyte dynamics.

Fig. 6. LCO modeling using DFN, SPMe, and SPM model with 0.5C (a) and 1C (b) C-rates. DFN, Doyle–Fuller–Newman; SPM, single particle model; 
SPMe, single particle model with electrolyte dynamics.

Fig. 7. LFP modeling using DFN, SPMe, and SPM model with 1C (a) and 5C (b) C-rates. DFN, Doyle–Fuller–Newman; SPM, single particle model; 
SPMe, single particle model with electrolyte dynamics.

TABLE II. 
OPTIMIZED VALUES

Prada value 
[13]

Arksand value 
[14]

Optimized 
value

Negative electrode 
thickness [m]

3.6e−5 6.57e−5 3.46e−5

Negative particle 
radius [m]

5.86e−6 2.39e−05 7e−7
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methodologies in terms of their complexity and predictive capa-
bilities. Furthermore, it explores the relationship between these 
modeling approaches and specific chemical compositions. During 
the investigation, several modeling techniques from the literature 
were refined using optimization methods to enhance accuracy. By 
scrutinizing the modeling outcomes in detail, efforts were made to 
identify which chemical compositions align more accurately with 
particular modeling methodologies, as well as identifying chem-
istries that are more amenable to physics-based modeling. Future 
research endeavors may prioritize standardizing parameterization 
procedures and discharge-charge tests within laboratory settings 
to enhance data precision, while also incorporating machine learn-
ing techniques to improve the accuracy of battery parameters. The 
integration of machine learning and physics-based modeling holds 
promise for the development of advanced models, facilitating a 
deeper comprehension of battery dynamics and contributing to the 
continuous advancement of battery technology.
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