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ABSTRACT

Wind energy forecasting studies play an important role in the search for sustainable energy solutions. However, wind power generation faces an inherent 
challenge. It is subject to constant fluctuations caused by meteorological conditions. These fluctuations can lead to inconsistencies in voltage and frequency 
within power grids, resulting in energy instability. To meet this challenge and ensure a reliable energy supply, measures must be taken to reduce the potential 
instability caused by changing wind conditions. This includes the development of advanced modeling techniques that take into account time-dependent and 
non-linear changes in wind speed. This type of modeling is crucial for minimizing energy losses and maintaining grid stability. As a result, the urgent need to 
meet the increasing energy demand while minimizing the environmental impact has triggered the transition to renewable energy sources. In this study, real 
short-term wind speed data from Osmaniye region were taken as research object. These data were analyzed in detail and the wind speed was estimated by 
considering the meteorological conditions. Artificial Neural Network was used in the prediction method, and the artificial intelligence algorithm was hybridized 
with the Dragonfly Algorithm and the coefficients of the artificial intelligence algorithm were trained with the Dragonfly Algorithm. It was used to compare the 
performance indexes of the prediction models designed with mean percent error, mean absolute percentage error, root mean square error. The performance 
analysis of Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System, Fuzzy and Dragonfly-Based Artificial Neural Network are 2,2512,2,0698,1,7458 
and 1,5212, respectively, based on mean absolute percentage error. Root mean square error values are 9,4857,8,2945,7,3285 and 6,4711. Finally, mean abso-
lute errors are 8,2310, 7,5269, 6,2385 and 5,9486, respectively.

Index Terms—Artificial intelligence, Dragonfly Algorithm, short-term prediction, wind speed forecast

I. INTRODUCTION
The greenhouse gas emissions have “led to significant climate 
change issues, such as melting glaciers, shifts in climate zones, 
droughts, and disruptions in the ecological system. Global and 
national efforts are being made to address this problem. As time 
passes, the escalating energy consumption has surpassed the capac-
ity of traditional energy sources to meet the demand. [1]. Fossil fuels 
are a form of energy that cannot be replenished and their burning 
can lead to severe environmental contamination [2]. To address the 
growing need for energy while lessening our carbon footprint, it is 
suggested that renewable sources of energy be utilized. Renewable 
energy is considered “clean energy” because it has minimal environ-
mental impact compared to fossil fuels. The European Commission 
has announced the European Green Deal, a comprehensive plan 
with the goal of making Europe the first climate-neutral continent 

by 2050. It encompasses a wide range of initiatives and policies to 
reduce greenhouse gas emissions, promote energy efficiency, tran-
sition to renewable energy sources, and foster a circular economy 
that minimizes waste and pollution while maximizing resource effi-
ciency. The goal of the circular economy model is to extend the lifes-
pan of resources by utilizing them for as long as possible, extract 
the utmost value from them during their lifetime, and decrease 
waste and environmental impact to the lowest possible extent. This 
approach not only reduces pollution and waste but also contributes 
to the preservation of biodiversity and the mitigation of climate 
change. The Paris Climate Agreement, signed by almost all coun-
tries around the world, sets the goal of limiting global warming to 
well below 2°C above pre-industrial levels and pursuing efforts to 
limit the temperature increase to 1.5°C. The agreement promotes 
international cooperation to reduce greenhouse gas emissions and 
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enhance resilience to the impacts of climate change. The concept 
of nature-friendly energy has gained significant support globally. 
Renewable energy sources, such as solar, wind, hydropower, and 
geothermal energy, are considered nature-friendly as they pro-
duce minimal greenhouse gas emissions during operation and have 
lower environmental impacts compared to fossil fuel-based energy 
sources. Solar and wind energy are prominent sources in terms of 
renewable energy production in our country. Wind power has expe-
rienced rapid growth as a renewable energy source in recent years, 
due to its benefits such as being environmentally friendly, emitting 
no carbon dioxide, having plentiful resources, and being cost-effec-
tive [3, 4]. Global electricity generation in 2021 is dominated by 
renewable energy, which accounts for 38.3% of the total. Among the 
different sources of renewable energy, wind power comprises 6.7% 
of the total electricity generated [5]. Globally, the installed wind 
capacity in 2022 stands at 78 GW, and it is anticipated to increase to 
115 GW according to Global Wind Energy Council (GWEC) [6]. Wind 
energy is becoming widespread throughout the world, especially in 
order to reduce the problem of foreign dependency and to minimize 
the shortage of raw materials. In addition, wind energy has gained 
more importance today due to its advantages such as minimizing the 
damage to nature and not occupying as much space as solar energy 
fields. However, wind energy production forecasts need to be made 
accurately in order to produce, efficiently use, and distribute wind 
energy effectively. Wind energy forecasts are used to predict future 
wind conditions and potential energy production. These forecasts 
are important for ensuring optimum performance of wind farms, 
planning power generation and managing the distribution network. 
Accurate forecasts help wind energy investments to be made more 
effectively and efficiently. Therefore, reliable wind energy forecast-
ing is essential for the planning and management of wind energy 
projects. Forecasts are made by considering factors such as scien-
tific methods, meteorological data, wind speed, and direction. Thus, 
optimum use and efficient distribution of wind energy resources can 
be achieved. Periodic variations in wind speed and direction in wind 
energy systems can cause energy fluctuations. It is therefore impor-
tant for the wind energy system to remain in balance and for users 
and operators. In these systems, where variability is high due to 
meteorological conditions, short-term energy estimations are more 
commonly preferred. In recent years, many scientists and research-
ers have conducted extensive studies on short-term wind power esti-
mation methods in wind energy systems. Wind speed prediction is a 
critical task when it comes to enhancing the quality of wind power 
generation. It is an indispensable task that cannot be overlooked [7]. 
The main purpose of these studies is to optimize wind energy pro-
duction and to ensure system stability. Models and algorithms are 

utilized to predict wind speed and power, forming the basis of short-
term wind power forecasts. These forecasts are calculated using dif-
ferent data and analysis methods, such as real-time weather data, 
wind speed and direction measurements, atmospheric models, and 
statistical methods. Forecasts are usually made on an hourly or daily 
basis and are used to optimize wind power generation and ensure 
system stability. These short-term forecasts increase the efficiency 
of wind power systems, improve energy distribution planning, and 
allow for adjustments to suit energy demand. The current calcula-
tion of the wind generation potential in our country and the use of 
these estimates contribute to the economy and energy sustainabil-
ity. As a result, short-term energy forecasts in wind energy systems 
are an important tool for adapting to high variability natural condi-
tions and optimizing the system. These studies continue to make 
wind power generation more efficient and stable. The work done in 
recent years can be summarized as follows;

Hur [8] focuses on a wind power estimation scheme that consists of 
two stages. In the first stage of the estimation scheme, modeling is 
performed using a three dimensional (3D) wind field model and an 
extended Kalman filter. The 3D wind field model helps in capturing 
the complex nature of wind patterns and variations in different direc-
tions and heights. The extended Kalman filter, designed based on the 
nonlinear rotor model, aids in improving the accuracy of wind power 
estimation. In the ongoing estimation phase, extrapolation and 
machine learning methods are employed. Extrapolation techniques 
are used to extend the available data beyond the observed period, 
enabling predictions of wind power in the future. Algorithms and 
models are utilized by machine learning methods to learn patterns 
from past data, which are then used to make predictions. The inte-
grated wind power forecast chart developed in the study is tested 
using data from an aeroelastic model.

Jiang et al [9] focuses on proposing a combined estimation system 
for wind speed forecasting. The study presents experimental results 
that prove the effectiveness of the proposed forecasting system. 
This system is capable of providing both point and range forecasts 
for wind speed. It is shown to outperform other benchmark models, 
indicating its usefulness for the programming and management of 
electrical power systems.

Four distinct models of Recurrent Neural Networks (RNNs) were uti-
lized to estimate wind energy production in a study [10]. The objec-
tive of the research was to predict short-term wind speed using 
data from a wind station located in Yalova, Türkiye. The forecasts 
were designed to predict 1 hour ahead, so as to facilitate sudden 
failure and maintenance planning. The data obtained from the sta-
tion were initially examined in detail, and data analyses were carried 
out. Subsequently, new datasets were created from existing data 
and were made suitable for the models. Four different TSA models 
were then employed to predict wind speed. The findings suggest 
that wind speed estimation can be effectively carried out using TSA 
techniques. The performance results of the models fall within the 
acceptable range, and it was found that they provide better results 
than traditional time series methods. The study demonstrates that 
TSA methods are an effective tool for wind power generation by esti-
mating wind speed.

Main Points

•	 It is the first time to use Dragonfly Algorithm-based Artificial 
Neural Network (ANN) to predict wind speed.

•	 The Dragonfly Algorithm is utilized for training the ANN.
•	 The proposed algorithm outperforms the results obtained 

from the literature survey.
•	 And with this algorithm, the local minimum does not occur 

in this controller.
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Neshat et al [11] focus on short-term wind speed estimation using 
the bidirectional Long Short-Term Memory (LSTM) method. The 
research employed an optimization algorithm for the estimation of 
parameters. Machine learning models often use optimization algo-
rithms to adjust their parameters and enhance their performance. 
The goal of the optimization process is to identify the optimal param-
eter values that lead to the lowest possible error or loss function 
and the highest possible predictive accuracy. It analyzed the spatial 
and temporal changes in the wind energy field. The results indicated 
significant seasonal differences and regional characteristics in the 
wind energy resources within the study area. Furthermore, the study 
found that wind energy resources have been gradually increasing 
since 2010. The reason for this increase was attributed to changes in 
large-scale ocean and atmosphere circulation patterns, particularly 
influenced by global warming.

Wickramasinghe et al [12] Using statistical techniques and machine 
learning, a new wind energy prediction model was developed and 
tested for a specific wind farm. In order to develop the model, wind 
speed and ambient temperature were selected as input variables, 
while daily wind energy production was chosen as the output vari-
able. The Pearson and Spearman correlation coefficients were 
used to investigate the correlation between wind energy and each 
weather index. The study tried several statistical prediction mod-
els, including Multiple Linear Regression, Power Regression (PR), 
Support Vector Regression (SVR), Gaussian Process Regression, 
Feedforward Backpropagation Neural Network (FFBPNN), Cascade 
Forward Backpropagation Neural Network, and Recurrent Neural 
Network (RNN) using machine learning techniques. The accuracy 
of the prediction models was evaluated based on the determina-
tion coefficient, root mean square error (RMSE), and Nash–Sutcliffe 
Efficiency (NSE). Based on the performance evaluation, the study 
concluded that all models achieved high accuracy, with the 
FFBPNN-based model exhibiting exceptional performance and very 
low error.

Yang et al [13] aimed to assess the impact of climate uncertainties 
on predicting future renewable energy potential across five climate 
regions in Europe. The study focused on quantifying the effects of 
uncertainty arising from global climate models (GCMs) on renewable 
energy project planning. The results indicated that the uncertainty 
associated with GCMs had the most significant impact on the design 
of renewable energy production. The study identified differences 
in solar photovoltaic (PV) and wind energy potential resulting from 
climate change uncertainties. Furthermore, the research presented 
how the climate change signal in solar radiation affected different 
scenarios and changed over time. It also explored the impact rates 
on wind generation through case studies.

Zhang and Chen [14] propose a signal processing method that 
combines Singular Value Decomposition (SVD) with two adaptive 
noise reduction techniques: Complete Ensemble Empirical Mode 
Decomposition with Adaptive Noise and Full Ensemble Empirical 
Mode Decomposition. Elman neural networks have been used in 
the study, and they have been optimized with the Particle Swarm 
Optimization algorithm. Additionally, the Autoregressive Integrated 
Moving Average model has also been utilized for the purpose of 

predicting Intrinsic Mode Functions (IMFs). These IMFs are obtained 
through the decomposition of the wind speed data using the pro-
posed signal processing method. The results of the study indicate 
that the proposed model improves the accuracy of wind speed esti-
mation and reduces estimation errors. This has significant implica-
tions for the stable operation of wind farms and the grid connection 
of power plants relying on wind energy. By incorporating advanced 
signal processing techniques and machine learning models, the 
proposed approach enhances the effectiveness of wind speed esti-
mation. This, in turn, contributes to the efficient utilization of wind 
energy resources and the optimization of wind power generation.

Yildirim et al [15] focused on estimating 1-hour-ahead solar radia-
tion using different methods based on neural networks. The study 
utilized solar PV data collected from the Tarsus region in Türkiye in 
2023. Neural networks are a type of machine learning model that 
can learn patterns and make predictions based on input data. In this 
study, neural networks were used to estimate solar radiation, which 
is a crucial factor in solar energy generation. At the end of the study, 
numerical and graphical comparisons were made to evaluate the 
performance of different methods for 1-hour forward solar radia-
tion estimation. The results indicated that the LSTM method was the 
most successful among the methods examined.

Bounoua and Mechaqrane [16] focused on estimating Global 
Horizontal Solar Irradiation (GHI) using the LSTM method. The 
research used real data from the city of Erfoud in Morocco. The main 
objective of the study was to estimate GHI at both hourly and sub-
hourly intervals using only historical data without relying on exter-
nal factors. Two scenarios were considered: a yearly scenario that 
accounted for all climatic conditions and a seasonal scenario that 
considered the specific climatic conditions of each season. In the 
study, the LSTM method was compared with other methods such 
as Neural Networks (NN) and Random Forest (RF). Despite the high 
variability of GHI, the LSTM network was found to be the most robust 
method for estimation. It exhibited good performance and high sta-
bility compared to the ANN models. Long Short-Term Memory is 
a type of RNN that is particularly effective in capturing long-term 
dependencies and modeling sequences of data. Its ability to handle 
sequential information makes it suitable for time series forecasting 
tasks, such as solar irradiation estimation. The study’s findings sug-
gest that the LSTM method outperformed other methods, including 
ANN models, in estimating GHI. The robustness, performance, and 
stability of LSTM make it a promising choice for accurate and reliable 
solar irradiation predictions.

Marinho et  al [17] were conducted on short-term solar irradiance 
estimation. The research focused on comparing three different esti-
mation methods and evaluating their performance. It was observed 
that the Convolutional Neural Network (CNN-1D) and LSTM meth-
ods performed better in predicting short-term solar irradiance, 
according to the results and analysis of various error criteria. The 
researchers aimed to estimate short-term solar irradiance using 
the LSTM network approach through time series prediction in this 
study. Wind power has become increasingly popular as one of the 
most rapidly growing sources of renewable energy around the globe. 
The use of this technology has been on the rise, largely due to its 
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eco-friendliness and the vital part it can play in tackling the obstacles 
associated with climate change. Wind energy is considered a priority 
because it offers several benefits, including being a clean and sus-
tainable alternative to fossil fuels. Among the various types of wind 
energy technologies, horizontal axis wind turbines (HAWTs) have 
emerged as the predominant choice for large-scale wind energy gen-
eration. The rotor shaft and blades of these turbines are positioned 
horizontally and they rotate around an axis that is also horizontal. 
This axis is perpendicular to the direction of the wind. Horizontal 
axis wind turbines are commonly seen in wind farms and are known 
for their efficiency and capacity to generate substantial amounts of 
electricity. Horizontal axis wind turbines are also used in this study. 
Within the scope of the research, 10 000 real data were processed. 
Seventy percent of the data were used for training and 30% for test-
ing in Artificial Neural Network (ANN). In the study, wind speed 
estimation was made. The speed, wind power, blade angle, air tem-
perature, and time input of the HAWTs were taken as inputs and the 
system modeling was carried out.

A TCM system [18] that involves the Walsh–Hadamard transform 
for signal processing is suggested. Deep Convolutional Generative 
Adversarial Network (DCGAN) aims to tackle the challenge of limited 
experimental dataset availability. Additionally, three machine learn-
ing models, namely SVR, gradient boosting regression, and RNN, are 
explored for tool wear prediction. The mean absolute error, mean 
square error, and RMSE are used to assess the prediction errors 
of the three machine learning models. In order to choose relevant 
features, three metaheuristic optimization feature selection algo-
rithms—Dragonfly, Harris hawk, and Genetic algorithms—are tested, 
and the prediction outcomes are compared.

A novel approach [19], called stochastic distributed cooperative 
control, is presented for island microgrids (MGs). The suggested 
approach for achieving efficient active power sharing is to use a 
proportional resonant (PR) controller and virtual impedance droop 
control in stationary reference frames, combined with distributed 
averaging secondary control optimized by the Dragonfly Algorithm 
(DA). This technique enables mean-square synchronization for the 
voltage and frequency restoration of distributed generators (DGs). 
A sparse communication network is employed to reduce the need 
for extensive communication and information exchange, as well 
as to avoid data congestion. The proposed system offers a balance 
between voltage regulation and reactive power sharing, making it 
intuitive. To assess performance and compare results, a conven-
tional centralized secondary control with PR droop control has been 
simulated. Empirical evidence is presented to demonstrate the MG’s 
ability to confront communication failure and work reliably during 
plug-and-play operations.

Tittu George et al [20] proposed that renewable solar–wind power 
generation can be implemented on unutilized rooftop spaces and 
underutilized potential locations of educational institutions, in addi-
tion to conventional grid power solutions, in order to achieve effec-
tive and cost-optimal power solutions. A mathematical modeling 
technique called Modified DA was utilized to reduce the net pres-
ent value of the power systems over their lifespan. The model was 

designed to consider various scenarios and found that the best case 
to improve economic reliability significantly is a hybrid renewable 
energy system with grid interaction.

In recent years, the DA has been increasingly utilized due to its low 
parameter count, adaptability to various problems, and comprehen-
sible algorithmic steps during operation. Simultaneously, the DA can 
identify the optimal local outcome, while also determining the global 
best result. The DA tends to cluster around each optimal outcome, 
allowing it to find the best possible result with the shortest iteration 
number.

II. METHODS
A. Wind Speed Prediction Models
There are several factors that have contributed to the rise in energy 
production costs. These include changes in regulations, disruptions 
in the supply chain, fluctuations in fuel prices, and the adoption of 
renewable energy sources. Unlicensed solar power plant (SPP) and 
renewable energy sources (RES) regulations likely refer to the chal-
lenges posed by decentralized energy production from small power 
plants and renewable sources, which can affect the overall energy 
market dynamics and pricing. Forecasting studies are essential to 
navigate these complex challenges. Stakeholders in the energy 
sector can make informed decisions regarding resource allocation, 
investment, and regulatory adjustments by anticipating energy con-
sumption and production trends across various time frames such 
as short-term, medium-term, and long-term. When examining esti-
mation studies in the literature related to various fields, including 
energy production, economics, and beyond, it is common to find 
that forecasts are categorized into short-, medium-, and long-term 
estimations. After analyzing the research, it is clear that the com-
monly used models are the ANN and hybrid models. The dragon-
based hybridized ANN technique was implemented in this study for 
the first time in the literature.

B. Artificial Neural Networks
Artificial Neural Networks are a critical part of deep learning, which 
is a branch of artificial intelligence and machine learning. Artificial 
Neural Networks are designed to model the behavior of biological 
neural networks by mimicking their structure and function. They 
are utilized for tasks such as recognizing patterns in data, process-
ing information, and making decisions. Due to their hierarchical 
structure, ANNs are particularly effective in handling complex and 
non-linear relationships within data. Unlike traditional linear mod-
els, ANNs can process and learn from data with non-linear patterns, 
making them suitable for a wide range of applications.

An ANN typically comprises three distinct types of layers. The first 
layer, known as the input layer, is responsible for receiving the initial 
input data, which could be in the form of numerical values, images, 
text, or any other type of data. Each input node in the input layer 
represents a feature or attribute of the data. The second type of 
layer are the hidden layer(s), which are located between the input 
and output layers. These layers perform intermediate computations 
by processing and transforming the input data through a series of 
interconnected nodes, also known as neurons. Each neuron takes 
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input from the previous layer and applies an activation function to 
produce an output. Finally, the output layer provides the final results 
or predictions based on the computations performed in the hidden 
layers. The number of nodes in the output layer varies depending on 
the specific task, such as classification (multiple nodes representing 
different classes) or regression (a single node representing a continu-
ous value). The structures and operations of human neurons serve 
as the basis for ANNs. It is also known as neural networks or neural 
nets. The input layer of an ANN is the first layer, and it receives input 
from external sources and releases it to the hidden layer, which is the 
second layer. In the hidden layer, each neuron receives input from 
the previous layer neurons, computes the weighted sum, and sends 
it to the neurons in the next layer. These connections are weighted 
means effects of the inputs from the previous layer are optimized 
more or less by assigning different–different weights to each input 
and it is adjusted during the training process by optimizing these 
weights for improved model performance in Fig. 1. Inn ANN; Input 
values and weight for each input values w0 are available. The entered 
value and the weights w0 are multiplied (WnXn) all together with the 
multiplication value addition function and is summed to obtain the 
net input value of the system. Net after adding bias (b) to the input 
value is passed to the activation function and an output value (Y) is 
obtained.

In this study, Short with Neural Network periodical wind speed 
estimation was made. Analysis has been carried out using the 
MATLAB 2023-A Program. The network structures have five inputs 
and an output. Input parameters are wind power, turbine speed, 
blade angle, air temperature, and time. The wind speed is the 
output parameter. The ANN method requires the determination 
of the number of neurons, including input and output layers. For 
this study, only one layer was used for the output parameter, while 
five different parameters were used as input parameters, each 
requiring its own input layer. The model architecture included a 
hidden layer consisting of ten neurons. With these configurations, 
it is aimed to determine the best method based on the results of 
experiments and the margin of error. For both methods, 10 000 
total data were processed. In the ANN technique, 70% of the data 
were allocated for testing and 30% for training. The real dataset 

used in Osmaniye’s wind turbine power plant consists of 10 min-
utes of data for July 2022.

C. The Dragonfly Algorithm
The DA is an optimization algorithm inspired by nature, specifically 
the swarming behavior of dragonflies. The algorithm takes inspira-
tion from the hunting behavior of dragonflies, which involves both 
individual exploration and collective cooperation. Dragonflies exhibit 
efficient foraging and hunting strategies, making them an interesting 
model for optimization algorithms.

The DA consists of three main components:

1) Swarm Movement
Dragonflies search for food by moving in a synchronized manner. In 
a similar way, an algorithm employs a group of solutions, known as 
dragonflies, to explore the search space. Each dragonfly corresponds 
to a prospective solution to the optimization problem.

2) Prey Location and Capture
Dragonflies locate and capture their prey based on visual percep-
tion and movement prediction. In the algorithm, this behavior is 
simulated by considering the fitness value of each solution and 
the distances between them. The objective of the algorithm is to 
discover the optimal solution. This is achieved by applying certain 
rules to adjust the positions of dragonflies. Information exchange: 
Dragonflies communicate with each other by exchanging infor-
mation about prey locations. In the algorithm, this is modeled 
through a mechanism called information sharing, where dragon-
flies update their positions based on the knowledge gained from 
their neighbors.

The DA is particularly suited for solving optimization problems in 
continuous domains. Various optimization tasks, such as function 
optimization, parameter tuning, and data clustering, have been tar-
geted by it. The DA’s three basic operators are separation, alignment, 
and cohesion (rapport).

3) Separation Operator
The separation operator in the DA is responsible for preventing colli-
sions and overcrowding among individual dragonflies in the swarm. 
It ensures that dragonflies maintain a certain minimum distance 
from each other to prevent them from converging to the same solu-
tions and getting stuck in local optima.

4) Alignment Operator
The alignment operator helps dragonflies in the swarm to maintain 
a certain level of coherence and synchronization. It ensures that 
each dragonfly’s movement direction and speed are influenced by 
the average direction and speed of its neighboring dragonflies. This 
alignment allows the swarm to explore the search space in a coordi-
nated manner.

5) Cohesion (Rapport) Operator
The cohesion, also known as the rapport operator, is responsible for 
maintaining the cohesion of the swarm by moving each dragonfly 

Fig. 1. ANN structure.
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toward the center of mass of its neighboring dragonflies. This helps 
in keeping the swarm together and avoiding fragmentation.

The pseudo code of the Dragonfly Algorithm is below:

 { 

 Generate the dragonfly population Ti (i=1,2……..n) 

 Generate step vector ∆ Ti(i=1,2……..n) 

 While (continue until the termination condition is fulfilled) 

    Calculate fitness value of all dragonflies 

 Update food source and enemy 

 Update weight values (s, a, c, f, e and w) 

 Calculate S, A, C, F and E 

 Update neighborhood Radius 

 If (there is at least one neighbour) 

    Update step vector 

    Update position vector 

  else 

    Update position vector 

  end if 

  Keep dragonflies within optimization limits 

 end while 

 } 

The equations (1), (2), and (3) are below that related to the DA;
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The orientation to food operator Fi denotes orientation to the global 
best solution. The evasion operator Ei stands for moving away from 
the worst solution. In these transactions, they are given as (4) and 
(5), respectively.

	 F T Ti � �� 	 (4)

	 E T Ti � �� 	 (5)

As seen in the program flow, after the completion of these five 
operations, if there is a neighbor in the neighborhood radius, 

each dragonfly’s position is updated using equations (6) and (7), 
respectively.
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If there are no neighbors in the neighborhood radius, the relations 
given by (8), (9), and (10) are used to improve the position update 
randomness. Here, σ Levy represents the flight distribution.
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The study aims to minimize the sum of the square error given by (11) 
as the objective function.
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n is the number of histogram rate intervals, fprediction (Ki) shows the 
frequencies set by the calculated parameters, and fobservation (Ki) shows 
the frequencies formed from the observations in the histogram.

A flowchart of the DA process is given in Fig. 2, and the steps included 
in this process are:

•	 Assign random locations to the dragonflies and find the fitness. 
Assign values to food and enemy.

•	 Decide the stopping criterion and start iterations.
•	 Update the weights based on iteration number and randomness.
•	 In the presence of a neighbor, calculate (1), (2), and (3) for each 

fly. Update the position by adding the current position.
•	 In the absence of a neighbor, assign a new position to the drag-

onfly using a random walk.
•	 Perform the third step and then the fourth or fifth step depend-

ing on the neighbor’s presence after updating food and enemy.
•	 Repeat the above step till termination is reached.
•	 Note down the food position.

D. Adaptive Neuro-Fuzzy Inference System
The Adaptive Neuro-Fuzzy Inference System (ANFIS) utilizes a train-
ing process for neural networks to modify the membership func-
tion and its parameters associated with it to attain the desired data 
sets. Compared to the mean square error criteria, it produces more 
precise results by leveraging expert recommendations. The hybrid 
ANFIS learning algorithm integrates the back-propagation learning 
algorithm and the least squares method. To simplify the process, a 
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scenario is considered with two inputs and one output. The ANFIS 
structure in Fig. 3 comprises five levels, and each layer’s functions 
are summarized as follows:

Layer 1: The first layer generates output based on the membership 
values obtained from input samples and membership functions. 

The output values are expressed as follows, assuming that the input 
nodes are x and y, and the linguistic labels are A and B, with µAi and 
µBi representing the membership functions (12).

	   ί =1,2	

	              for	 (12)

	   ί=3,4	

The common belief is that µAi and µBi membership functions have a 
distribution shaped like a bell, with a maximum of 1 and a minimum 
of 0. Mi represents the midpoint of the bell-shaped membership 
function, while σ represents the standard deviation. Equation (13) 
can be used to calculate µ (x), which is the value of the membership 
function at a given point x.

	 	 (13)

The determination of the strength of each rule’s activation takes 
place in layer 2, by using mathematical multiplication in (14).

	 	 (14)

The normalization of firing strengths occurs in layer 3. In this layer, 
each node computes the ratio of the firing strength of the rule it 
represents to the total firing strength of all other rules. The ith node 
determines this ratio for the ith rule in (15).

	 	 (15)

The output for each node in layer 4 is calculated by adding the nor-
malized firing strength to a first-order polynomial. The outputs speci-
fied in 16 correspond to the fuzzy if-then rules, which are marked by 
“and.”

o Rule 1: if x is A1 and y is B1 then f1 = p1x+q1y + r1

o Rule 2: if x is A2 and y is B1 then f2 = p2x+q2y + r2

	 	 (16)

Linear p, q, and r are the parameters that are known as conse-
quent parameters. This node adds the total incoming signals from 
the 4th layer to calculate the ANFIS’s overall output in layer 5 by 
using 17.

	 	 (17)

The following output represents the conclusive outcome of the 
adaptive neuro-fuzzy inference system in (18).

Fig. 2. Dragonfly Algorithm Structure

Fig. 3. ANFIS structure.
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	 	 (18)

E. Fuzzy Expert System
A computational model is combined with a fuzzy model based 
on the Mamdani inference system to predict the probability of 
newborn death. A fuzzy linguistic model is a rule-based system 
that uses fuzzy set theory to solve problems. It comprises four 
primary parts:

•	 The role of a fuzzifier is to transform precise input or traditional 
numbers into fuzzy values.

•	 An inference engine is utilized to produce a fuzzy output using a 
fuzzy reasoning mechanism for Mamdani inference.

•	 A knowledge base comprises a collection of fuzzy rules and 
membership functions that represent the fuzzy sets of linguistic 
variables.

•	 A defuzzifier, which converts the fuzzy output to sharp values.

The inference engine utilizes the rule base values to make deci-
sions. Fuzzy rules define the relationship between the fuzzy input 
and fuzzy output. A fuzzy rule has an antecedent and consequent, 
with fuzzy operators representing the antecedent and an expression 
providing the output variable’s fuzzy values as the consequent. The 
inference process evaluates each rule in the rule base, aggregates 

the weighted consequences of all relevant rules into a single output 
fuzzy set (the Mamdani model), and produces a “crisp” output value 
using a defuzzification process to replace the fuzzy output set.

Fuzzy expert systems, which work based on the fuzzy-logic approach, 
can model the rules obtained from fuzzy preferences of experts and 
can provide outputs by using these rules. The main elements of a 
fuzzy expert system are fuzzy logic, fuzzy base rule, fuzzy inference, 
and learning method in Fig. 4.

F. The Properties of Data Set
In this study, Short with Neural Network periodical wind speed esti-
mation was made. Analysis has been carried out using the MATLAB 
2023-A Program. The network structures have five inputs and an 
output. Input parameters are wind power, turbine speed, blade 
angle, air temperature, and time. The output parameter is the wind 
speed. In the use of the ANN method, the number of neurons which 
includes input and output layers is determined. In the study, there is 
one layer used for the output parameter. In addition, five different 
parameters were used as input parameters. An input layer has been 
determined for each. The hidden layer in the model architecture is 
designed to have ten neurons. With these configurations, it is aimed 
to determine the best method based on the results of experiments 
and the margin of error. For both methods, 10 000 total data were 
processed. In the ANN method, 70%–30% of testing and training 
data were taken respectively. Located in Osmaniye of the wind tur-
bine power plant, which contains 10 minutes of data for July 2022, 
the real dataset is used.

III. RESULTS AND DISCUSSION
In this section, the created systems are examined according to the 
modeling architectures. It was aimed to determine the best method 
based on the results of the margin of error obtained by conducting 
the experiments, and the results of these studies were presented. 
Mean Percentage Error MPE and Mean Absolute Percentage Error 
(MAPE) calculations are the most powerful methods used for accu-
racy comparisons of a method. In the literature, models with a MAPE 
below 10% are “very good,” models with a MAPE between 10% and 
20% are “good,” models with a margin of error between 20% and 
50% are “acceptable,” and MAPE greater than 50% are models with 
a value of “wrong and erroneous.” The MAPE, RMSE, and MAE val-
ues of four different models established within the framework of the 

Fig. 4. Fuzzy expert system structure.

TABLE I. 
THE MAPE-RMSE-MAE VALUES OF CONVENTIONAL ANN, ANIFS, 

FUZZY, AND DA-BASED ANN METHOD

METHODS MAPE RMSE MAE

ANN 2.2512 9.4857 8.2310

ANFIS 2.0698 8.2945 7.5269

FUZZY 1.7458 7.3285 6.2385

DA-based ANN 1.5212 6.4711 5.9486

ANN, Artificial Neural Network; ANFIS, Adaptive Neuro-Fuzzy Inference System; 
DA, Dragonfly Algorithm; MAPE, mean absolute percentage error; RMSE, root 
mean square error. 
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article are shown in Table I. In the evaluation of the MAPE values 
obtained, it is clearly seen that the DA-based ANN model has the 
best accuracy.

A single hidden layer neural network has been selected with five 
neurons and an output layer. The parameters for training the net-
work are shown below:

•	 There are ten weights between the input-hidden layer.
•	 At the hidden layer, there are five bias values assigned to 

neurons.
•	 There are five weights that connect the hidden-output layer.
•	 At the output layer of the neural network, a lone bias value is 

allocated to the neuron.

During the optimization process, a total of 21 parameters of the 
neural network are trained. The network structure decides three 
important parameters required for wind power. The neural network 
is being trained using data, with 20 dragonflies being utilized for 
over 300 steps. Once training is complete, the testing phase begins. 
Swarm-based methods in the study commence with a population 
that is randomly dispersed, and then they are relocated based on 
an objective function that identifies the convenience value for each 
particle in the search space. An algorithm related to the equations 
of the particle is used to update particle information, creating a new 

generation. These procedures are repeated until the termination cri-
terion is reached. Following the completion of testing, the optimal 
values obtained by the best particle are utilized to create the ANN. 
Each dataset is executed independently 25 times, and the neural net-
work consists of the best parameters obtained at the end of the 25 
runs and used in the test phase.

The wind farm’s current wind speed is displayed in blue on Fig. 5, 
representing actual system data. Based on the current wind speed, 
the wind speed forecast was generated using the traditional ANN 
method, and is shown in yellow on the graph. When the data in 
the graph and table are examined, the MAPE value of the tradi-
tional ANN is 2.2512, the RMSE value is 9.4857, and the MAE value 
is 8.2310. These values are within the estimation acceptance limits 
and are recorded as systemic performance. Looking at the system 
performance with the dragonfly-hybridized ANN proposed in the 
article, as can be seen from Fig. 6 and the table, the orange wave-
form represents the hybridized ANN and the blue waveform repre-
sents the real wind speed. When the MAPE, RMSE, and MAE values 
are observed, respectively, it is seen that they are 1.5212, 6.4711, 
and 5.9486. Considering the performance of the system with the 
two proposed algorithms, it is clearly seen that the hybridized ANN 
performance is quite high, not being stuck to the local minimum, the 
learning is completed quickly and effectively, and directly affects the 
performance positively.

Fig. 5. Conventional ANN method for prediction wind speeds (real and predicted).
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Compared with the literature works, recent articles are used with 
ANN-based optimization method for fast response and not limited to 
local minimum for prediction to real values. Dragonfly Optimization 
Algorithm has faster response in other swarm-based algorithms 
that are preferred in literature mostly. The performance database 
is examined in detail, and it is obviously a fact that the performance 
is nearly 15% higher than the conventional ANN with swarm-based 
optimization such as firefly, butterfly, and shark.

The artificial intelligence-based wind speed prediction articles 
have been observed in recent literature within 5 years. When 
these articles are examined, it is seen that artificial intelligence 
is no longer used alone, but is integrated with optimization meth-
ods, which are hybrid methods. It is seen that optimization meth-
ods are preferred day by day in a way that does not get stuck in 
local minima. With this algorithm, which has emerged in recent 
years, we have solved the local minimum problem and hybridized 
the algorithm with the highest accuracy and accuracy detection 
speed with artificial intelligence methods. It is seen that MAPE 
and RMSE values are well below acceptable levels, as seen in the 
table. The method will also be used in long-term wind forecasts 
in the future.

IV. CONCLUSION
The management of wind power plants, power generation, and 
the stability of electricity grids is heavily reliant on accurate short-
term wind speed forecasting. For wind power plants to operate effi-
ciently and reliably, the wind speed must be accurately predicted. 

In addition, wind speed forecasts are important for the planning and 
management of electricity generation. Renewable energy sources 
such as wind power play a critical role in supporting the goals of 
the Green Deal. These energy sources produce less greenhouse 
gas emissions compared to fossil fuels and have less environmen-
tal impact. However, accurate forecasts and management strategies 
are required for the efficient use of these resources. In Osmaniye, 
ANN and ANN-based DA models were estimated by using hourly 
time series consisting of data such as wind power, turbine speed, 
and blade angle. The most efficient model of the study was found 
by comparing the results with each other and with the actual wind 
speed values. The study was conducted using a wind speed data-
set consisting of 10.000 data points obtained from the wind farm in 
Osmaniye. Input parameters are wind power, turbine speed, blade 
angle, air temperature, and time. The output parameter is the wind 
speed. This study focused on the estimation of wind turbine output 
velocity and compared the performance of two different models with 
real wind turbine performances. The study aims to determine the 
wind turbine exit speed and to assess the forecast models’ perfor-
mance by comparing the predicted exit speeds with the actual ones. 
Forecast results, regression, and error when evaluated within the 
framework of the analysis, it is seen that the best estimation results 
are obtained with the “ANN-based Dragon Algorithm” method. In 
conclusion, dragon-based hybridized ANN method was used for the 
first time in the literature.
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