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ABSTRACT

In this study, the efficiencies of three different neural network load forecasting algorithms are compared to determine the best performance. The algo-
rithms––Levenberg–Marquardt, gradient descent, and gradient descent with momentum and adaptive learning rate backpropagation are used to train a neural 
network (NN) model for energy demand prediction on a power system. Prior loads, weather parameters (temperature, relative humidity, and precipitation), 
and customer population of the supplied region are employed as training inputs. To ascertain the accuracy of the predictions, mean absolute error and mean 
square error are used as evaluation indices, and the algorithm with the least index values is deployed on a transmission substation. The Levenberg–Marquardt 
algorithm was found to be the most efficient candidate, and this algorithm is therefore recommended for adequate and proper system management, planning, 
and expansion, to enhance the efficiency, effectiveness, and accessibility of power supply.

Index Terms—Algorithm, comparison, load forecasting, model training, neural network, transmission substation.

I. INTRODUCTION
The ever-increasing human population and the need for industrial-
ization have led the human race to a dire need for stable and qual-
ity electrical energy [1, 2]. Proper planning for adequate electrical 
energy is therefore an absolute necessity. Load forecasting is an 
important planning practice in power system industries, as its rel-
evance stems from both the energy perspective and the economic 
angle [3]. Accurate load forecasting has many benefits, both mana-
gerially and economically. In the absence of efficient and effective 
forecasting of load, wastage is inevitable. Thus, robust forecasting 
is absolutely essential for the stakeholders in the energy sector [3]. 
Electrical load forecasting plays a key role for energy providers, eco-
nomic consortia, and other corporations in the domain of electrical 
energy [4]. However, for a load forecast to best serve its ultimate 
purpose, it must be accurate, fast, and robust [5]; and the loss func-
tion should be optimally minimized [6].

There has been a lot of attention on load forecast studies using dif-
ferent methods with various time bounds [7]. While some studies 
have used statistical techniques [8-10], there are others that have 

used the artificial intelligence (IA) algorithms or machine learn-
ing models [11, 12]. One of the machine learning models that has 
gained a lot of relevance in load forecasting is the neural network 
(NN), which is a machine learning pattern that mimics the working 
function of the brain [13]. Machine learning uses data and produces 
a model to perform a task [14].

Load forecast in a power system is generally classified into short-
term load forecast (STLF), medium-term load forecast (MTLF), and 
long-term load forecast (LTLF) [4]. However, [5] presents a fourth 
type, with the addition of very-short-term load forecast (VSTLF). The 
VSTLF has the least time of forecast, as [6] highlights that the period 
of this forecast is from one minute to one day. Conversely, [4] pro-
posed that the range of VSTLF is from a few minutes to an hour ahead. 
The time range given by the latter is worth noting because if the 
time range extends to a day, then it is STLF [15]. The predictions of 
load for various time horizons are noted for various operations [10]. 
Very-short-term load forecast is significant because it helps the elec-
tric utilities and grid operators in making important decisions on 
real-time scheduling of electricity generation, real-time operation, 
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demand–response, security assessment, sensitivity analysis, and 
load frequency control [3]. Furthermore, it is also helpful in real-time 
control of the electrical power system [4]. While [16] proposes that 
load prediction from a few hours to a few days is STLF, the authors in 
[4, 8–10] are more specific that STLF is often between an hour and 
one week. Short-term load forecast also gives hourly forecast results 
and is useful in power system decision making in overload condi-
tion and in spinning reserve planning [6]. It also plays an important 
role in grid stability [16], and moreover, [15] add that STLF provides 
useful notifications for power system administrators to enhance load 
usage. In the case of MTLF, the range is mostly between 7 days and 
12 months [3, 13, 14], and its significance includes providing the 
power system stakeholders with adequate notification for system 
expansion, power system equipment requirements, and employ-
ment of staff [17]. Any load prediction that is for more than a year 
is grouped as LTLF [18], which lasts years and even decades, and 
is useful for future expansion, planning, as well as recruitment of 
staff [15, 19].

Considering its numerous aspects of importance in power systems, 
load forecasting needs to be efficient and effective. The various 
techniques used in forecasting power system loads are grouped 
into three, namely, the statistical or classical or parametric method, 
the machine learning or non-parametric method, and the hybrid 
method [1]. Because electrical loads are affected by several factors 
like class of consumers, variation in the calendar, holidays, the time 
of day, economic activities, random activities like sports and festivals, 
meteorological parameters, and so on, load-prediction techniques 
need to be compared for optimal choice. Among the meteorological 
factors, temperature is the most important and most common input 
[16, 17]. In an evaluation of the statistical methods as presented in 
[8], three analytical techniques are employed to address the MTLF 
problem, with mean absolute percentage error and root mean 
square error used as evaluation metrics. A comparison of the three 
techniques shows that the technique of linear regression performs 
better than both compound growth and quadratic regression tech-
niques. The NN is employed by [1] to predict a power system, with 
mean square error (MSE) and mean absolute error (MAE) used as 
evaluation indices in the work which compares the backpropagation 
neural network (BPNN) and the radial basis function neural network 
(RBFNN). The BPNN has a better model, with ten hidden neurons, 
while the RBFNN has better architecture, with 15 neurons. In the 
work, the Levenberg–Marquardt (LM) algorithm performed better 
than the GD with momentum and adaptive learning rate backpropa-
gation (GD+) algorithm. Meanwhile, the shortcoming in the work 
relates to the large values of the performance metrics. In Ref [19], 
NN performed better than the support vector machine, k-nearest 
neighbors, generalized regression neural network, and the Gaussian 
process regression and recurrent neural network; with the least 
value of 1.5 during the validation process, while the other machine 
learning methods had values greater than 1.5.

In this present study, three different algorithms are compared, as 
they are employed to train the artificial neural network (ANN) and 
to ascertain the one that performs optimally. To ascertain the accu-
racy of the predictions, MAE and MSE are used as evaluation indices. 

The optimal algorithm is consequently used for electrical load pre-
diction in a transmission substation and then recommended for 
adequate and proper system management, planning, and expansion, 
to enhance the efficiency, effectiveness, and accessibility of power 
supply. The rest of this paper is structured as follows: while Section II 
presents the methodology of the study, the results obtained and the 
analyses of same are contained in Section III, and Section IV con-
cludes the study.

II. MATERIALS AND METHODS
Performances of Levenberg–Marquardt (LM), GD, and gradient 
descent with momentum and adaptive learning rate backpropaga-
tion (GD+) are compared to ascertain the optimal algorithm, as the 
three are used in the training of ANN. The best performing one is 
thereafter deployed for load prediction on a transmission substation. 
The Osogbo Substation in Southwest Nigeria is strategically located 
very close to the National Control Centre; therefore, the Transmission 
Company of Nigeria uses the substation for grid stability. Electrical 
load data were obtained from the Regional Control Centre, while 
information on weather parameters was obtained from the National 
Aeronautics and Space Administration (NASA), and the population 
data were obtained online. As shown in Fig. 1, feed-forward back-
propagation is employed in modeling the NN, with six inputs––tem-
perature, relative humidity, precipitation, population, actual load of 
year 2011 and actual load of year 2012––feeding the model. While 
Table I shows the values of the input parameters, Fig. 2 shows that 
there are 15 neurons in the hidden layer of the model, with hyper-
bolic tangent as the activation function.

The target of the model is the actual load for year 2013, which is the 
model’s output. The MSE and MAE are used to evaluate the network, 
and are described as [1]:

	 MSE � �� �
�
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	  (1)

	 MAE � �
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�1

0
N

y y
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For design and training of the NN, the perceptron and the algorithms 
are described. Shown in Fig. 3 is the block diagram of the perceptron, 
while Fig. 4 depicts a single-layer NN.

Fig. 1. ANN block diagram representation.
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For the perceptron: 

	 y g w X WT� �� �0 	 (3)

where y  is the output, g is the activation function, w0 is the bias, 
X is the inputs matrix, and W is the network weights [6].

In the NN, the weights that separate the inputs and the hidden stra-
tum are W(1), while those weights that separate the hidden stratum 
and the final stratum are W(2). As given in [6], the hidden layer is 
described as:

	 a w x wi i
j

m

j j i� �� �
�
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1

1 	  (4)

Thus, the hidden layer output will be g(ai) which corresponds to the 
inputs that feed the output layer:
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Fig. 2. Neural network architecture.

Fig. 3. A perceptron.

Fig. 4. Single-layer neural network.

TABLE I 
INPUT PARAMETERS OF THE NEURAL NETWORK

Input Parameters of the Neural Network

Months T (°C) Relative Humidity Precipitation (mm) Population 2011 Peak Load (MW) 2012 Peak Load (MW)

January 24.18 70.90 31.98 614917 66.1 65.2

February 25.73 77.81 47.31 615834 63.7 66.2

March 26.14 84.09 60.72 616750 66.8 68.9

April 25.69 84.15 138.97 617667 69.4 68.9

May 25.02 87.72 209.95 618583 70.9 72.1

June 24.35 88.58 204.55 619500 60.4 77.5

July 23.60 89.26 214.75 620416 62.1 77.5

August 23.39 88.86 182.19 621333 65.1 79.6

September 24.14 89.25 370.49 622249 60.7 67.9

October 24.81 88.39 203.07 623166 56.4 68.7

November 24.96 83.43 72.98 624083 68.9 79.0

December 24.45 70.68 28.27 625000 66.1 78.4
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Therefore,

, , , ,y g w g a w g a w g a w g a� � � � � � � � � � � �� � � � � � � �
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The algorithms of this study are LM, GD, and GD+. While LM is a 
modification of Newton’s method [20], GD is a classical algorithm 
for weight updates in the NN [21], and extension to GD produces 
the GD+ [22].

A. Levenberg–Marquardt
Being a modification of Newton’s method, LM is represented using 
Newton’s equation [23]: 

	 x x H x gk k k k�
�� �1

1( ) 	  (7)

where H is the Hessian matrix, xk the current value of x, g is the gradi-
ent, and xk+1 is the updated value of x. The Hessian matrix may not be 
positive definite. Hence, the LM modification addresses this short-
coming by adding µkI to the Hessian matrix. I is an identity matrix 
and µk ≥ 0. Thus, 

	 x x H x I gk k k k k�
�

� � � � �� �1
1

� 	  (8)

And by introducing a step size, αk (8) becomes, 

	 x x H x I gk k k k k k�
�

� � � � �� �1
1

� � 	  (9)

Furthermore, when µk→0, the LM modification tends to behave like 
the pure Newton’s method. Also, when µk→∞, the algorithm attains 
a pure GD with a small learning rate. The LM algorithm is, on the 
other hand, obtained from the Gaussian method [20] in (10): 

	 x x J J J ek k
T T

�

�
� � � �1

1 	  (10)

The Jacobian matrix is denoted by J and e stands for network errors. 
Therefore,

	 x x J J I J ek k
T

k
T

�

�
� � �� �1

1
� 	  (11)

B. Gradient Descent
For the GD algorithm, the loss function is minimized by calculating 
the slope, which is used in updating the weights, and is mathemati-
cally modeled as [24]: 

	 x x gk k k k� � �1 � 	  (12)

From (12), αk is the learning rate, and in the NN, the weights are 
updated to optimize the errors; xk denotes the previous weights, 
while xk+1 denotes the updated weights; and gk is the derivative of 
the loss function with respect to the weights. During training, the LM 

algorithm moves from being close to GD to being close to Newton’s 
method. This shows that the LM algorithm is the hybridization of GD 
and Newton’s method 

C. Gradient Descent with Momentum and Adaptive Learning Rate 
Backpropagation
Produced by extension to the GD, the GD+ algorithm ensures elimi-
nation of the possibility of being trapped in the local minimum dur-
ing the training process, by adding a momentum constant to the GD 
algorithm as [22].

	 x x Vk k k t� � �1 � 	  (12)

Where,

	 V V gt t k� � �� ��� �1 1 	  (13)

Where, β is momentum constant, taking values 0 < β < 1. When 
β = 0, (13) becomes Vt = gk. Therefore, when the momentum con-
stant is zero, GD is obtained. The default value of β is 0.9 [25].

III. RESULTS AND DISCUSSION
A. Correlation Analyses of the Inputs Variables
Fig. 5–8 represent the correlation plots of the input variables in the 
NN with respect to electrical load, in order to verify the effects of 
the inputs on the load. The temperature has a positive correlation 
of 0.3606 as shown in Fig. 8, which implies that an increase in tem-
perature will lead to an increase in electrical load in the supplied 
region. Moreover, relative humidity, precipitation, and popula-
tion have corelation coefficients of –0.3458, –0.4394 and –0.2533, 
respectively. They all have negative correlation with respect to the 
load. However, the correlation of population shows that an increase 

Fig. 5. Scatter plot of temperature (OC) against actual peak load 
(MW) of 2012.
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in population does not translate to increase in electrical load in the 
region under study. This problem could be mitigated by using renew-
able energy [26]. The stakeholders ought to look at this aspect criti-
cally to enhance the development needed in Osogbo, because the 
availability and accesibililty of elecrtrical load are synonymous with 
development.

B. Regression Analyses
The datasets used for the simulation were divided into 70% for 
training and 15% each for validation and testing of the NN model. 

The regression plots for the three algorithms have been presented 
in Fig.  9–11. Each of the plots has the output against the target. 
The closer the target to the output, the better the regression plots. 
Likewise, the more the regression value is to 1, the better. The out-
put value represents the equation of a straight line. The coefficient 
of the target is the gradient and the constant value is the intercept 
on output axis. Also, the more the slope is to unity and the intercept 
to zero, the better the regression plot. Each of the algorithms has 
four different plots; the training, the validation, the test, and the all 
plots. The plots of the LM algorithm are shown in Fig. 9. The algo-
rithm was well trained and so has regression value of 1, while the 
GD and GD+ algorithms have values of 0.9968 and 0.98741 respec-
tively. All the three algorithms performed well during validation and 
testing, as each has a regression value of unity. However, the all plots 
give the overall best performing algorithm. The LM, GD, and GD+ 
algorithms have values of 0.96799, 0.83317 and 0.93658 respec-
tively. These results mean that the LM algorithm has the best per-
formance during the training, because its value of 0.96799 is the 
closest to 1.

C. Performance Metrics of the Algorithms During Training
The best performing algorithm was also validated using the evalu-
ation metrics. The MAE and MSE functions in the MATLAB Neural 
Network toolbox were used to evaluate the performance of the 
three algorithms during the training process. The MAE and MSE of 
the algorithms are shown in Fig. 12. The LM algorithm has the least 
values of MAE and MSE, 0.602 and 2.0768 respectively, while GD 
has the highest values, 1.4559 and 9.9834 respectively, and GD+ 
performed better than GD because of the momentum it adds and 
because its learning function could adapt better. The work of [1] also 
proved that LM is better than GD+. Theoretically, both GD and GD+ 
are first-order algorithms while LM is a second-order algorithm [23], 

Fig. 6. Scatter plot of relative humidity (%) against actual peak load 
(MW) of 2012.

Fig. 7. Scatter plot of precipitation (mm) against actual peak load 
(MW) of 2012.

Fig. 8. Scatter plot of population against actual peak load (MW) of 
2012.
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which can solve more complex problems. Consequently, LG was 
deployed as the forecasting algorithm in this study.

D. Training and Prediction of the LM Algorithm
Fig. 13 shows the plots of LM during training. The graph illustrates 
that the target loads are equal to the output loads, except for the 

months of March and August. The overall errors are nearly zero. 
This showcases the good performance of the LM algorithm during 
training process of the NN model. This model was then used for 
prediction as presented in Fig. 14, which shows that the forecasted 
load is closest to the actual load for the months of April, May, and 
September. The errors are between the range 10 and –10, while the 

Fig. 10. Gradient descent algorithm regression plots.

Fig. 9. Levenberg–Marquardt algorithm regression plots.
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average prediction error is –2.05301. The LM algorithm has relatively 
good performance in this study, as illustrated in Table II which shows 
MAE to be 6.4675 and MSE 57.9962. The value of MSE is always 
greater than MAE because MSE penalizes errors more than MAE, as 
shown in (1) and (2).

IV. CONCLUSION
Three different NN algorithms have been compared for their elec-
trical load forecasting efficiencies. A NN model was developed for 
energy demand prediction on power systems, and the Levenberg–
Marquardt, gradient descent, and gradient descent with momen-
tum and adaptive learning rate algorithms were used to train the 
model. The training inputs were prior loads, weather parameters 
(temperature, relative humidity, and population), and population 
of the supplied region. From the correlation study of the inputs, it 
is found that the temperature has a positive correlation of 0.3606, 
implying that an increase in the temperature will lead to increase 

in electrical load in the supplied region. In addition, relative 
humidity, precipitation, and population have a negative correla-
tion of –0.3458, –0.4394, and –0.2533 respectively. The correla-
tion of the population shows that an increase in population does 
not translate to an increase in electrical load in the region under 
study. The accuracy of the prediction was appraised using MAE 
and MSE as evaluation indices; and the algorithm with the least 
index values was considered the best. Levenberg–Marquardt was 
found to be the most efficient technique, and was recommended 

Fig. 11. Gradient descent algorithm with momentum and adaptive learning rate regression plots.

Fig. 12. Evaluation of the algorithms during training.

Fig. 13. Target load, output load, and errors using the Levenberg–
Marquardt algorithm.
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for adequate and proper system management, planning, and 
expansion, to enhance the efficiency, effectiveness, and accessibil-
ity of power supply.
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